

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pykka 1.2.1 documentation

Pykka

Pykka is a Python implementation of the actor model [http://en.wikipedia.org/wiki/Actor_model]. The actor model introduces some
simple rules to control the sharing of state and cooperation between execution
units, which makes it easier to build concurrent applications.

Rules of the actor model

	An actor is an execution unit that executes concurrently with other actors.

	An actor does not share state with anybody else, but it can have its own
state.

	An actor can only communicate with other actors by sending and receiving
messages. It can only send messages to actors whose address it has.

	When an actor receives a message it may take actions like:

	altering its own state, e.g. so that it can react differently to a
future message,

	sending messages to other actors, or

	starting new actors.

None of the actions are required, and they may be applied in any order.

	An actor only processes one message at a time. In other words, a single actor
does not give you any concurrency, and it does not need to use locks
internally to protect its own state.

The actor implementations

Pykka’s actor API comes with the following implementations:

	Threads: Each ThreadingActor is executed by a regular thread, i.e.
threading.Thread. As handles for future results, it uses
ThreadingFuture which is a thin wrapper around a Queue.Queue. It has
no dependencies outside Python itself. ThreadingActor plays well
together with non-actor threads.

Note: If you monkey patch the standard library with gevent or
eventlet you can still use ThreadingActor and ThreadingFuture.
Python’s threads will transparently use the underlying implementation
provided by gevent or Eventlet.

	gevent: Each GeventActor is executed by a gevent greenlet. gevent [http://www.gevent.org/] is a coroutine-based Python networking library
built on top of a libevent (in 0.13) or libev (in 1.0) event loop.
GeventActor is generally faster than ThreadingActor, but as of gevent
0.13 it doesn’t work in processes with other threads, which limits when it
can be used. With gevent 1.0, which is currently available as a release
candidate, this is no longer an issue. Pykka works with both gevent 0.13 and
1.0.

	Eventlet: Each EventletActor is executed by a Eventlet greenlet. Pykka is
tested with Eventlet 0.12.1.

Pykka has an extensive test suite, and is tested on CPython 2.6, 2.7, and 3.2+,
as well as PyPy. gevent and eventlet are currently not available for CPython
3.x or PyPy.

A basic actor

In its most basic form, a Pykka actor is a class with an
on_receive(message) method:

import pykka

class Greeter(pykka.ThreadingActor):
 def on_receive(self, message):
 print('Hi there!')

To start an actor, you call the class’ method start(), which starts the
actor and returns an actor reference which can be used to communicate with the
running actor:

actor_ref = Greeter.start()

If you need to pass arguments to the actor upon creation, you can pass them to
the start() method, and receive them using the regular __init__()
method:

import pykka

class Greeter(pykka.ThreadingActor):
 def __init__(self, greeting='Hi there!'):
 super(Greeter, self).__init__()
 self.greeting = greeting

 def on_receive(self, message):
 print(self.greeting)

actor_ref = Greeter.start(greeting='Hi you!')

It can be useful to know that the init method is run in the execution context
that starts the actor. There are also hooks for running code in the actor’s own
execution context when the actor starts, when it stops, and when an unhandled
exception is raised. Check out the full API docs for the details.

To stop an actor, you can either call stop() on the actor_ref:

actor_ref.stop()

Or, if an actor wants to stop itself, it can simply do so:

self.stop()

Once an actor has been stopped, it cannot be restarted.

Sending messages

To send a message to the actor, you can either use the tell() method or the
ask() method on the actor_ref object. tell() will fire of a message
without waiting for an answer. In other words, it will never block. ask()
will by default block until an answer is returned, potentially forever. If you
provide a timeout keyword argument to ask(), you can specify for how
long it should wait for an answer. If you want an answer, but don’t need it
right away because you have other stuff you can do first, you can pass
block=False, and ask() will immediately return a “future” object.

The message itself must always be a dict, but you’re mostly free to use
whatever dict keys you want to.

Summarized in code:

actor_ref.tell({'msg': 'Hi!'})
=> Returns nothing. Will never block.

answer = actor_ref.ask({'msg': 'Hi?'})
=> May block forever waiting for an answer

answer = actor_ref.ask({'msg': 'Hi?'}, timeout=3)
=> May wait 3s for an answer, then raises exception if no answer.

future = actor_ref.ask({'msg': 'Hi?'}, block=False)
=> Will return a future object immediately.
answer = future.get()
=> May block forever waiting for an answer
answer = future.get(timeout=0.1)
=> May wait 0.1s for an answer, then raises exception if no answer.

For performance reasons, Pykka does not clone the dict you send before
delivering it to the receiver. You are yourself responsible for either using
immutable data structures or to copy.deepcopy() the data you’re sending off
to other actors.

Replying to messages

If a message is sent using actor_ref.ask() you can reply to the sender of
the message by simply returning a value from on_receive method:

import pykka

class Greeter(pykka.ThreadingActor):
 def on_receive(self, message):
 return 'Hi there!'

actor_ref = Greeter.start()

answer = actor_ref.ask({'msg': 'Hi?'})
print(answer)
=> 'Hi there!'

None is a valid response so if you return None explicitly, or don’t
return at all, a response containing None will be returned to the sender.

From the point of view of the actor it doesn’t matter whether the message was
sent using actor_ref.tell() or actor_ref.ask() . When the sender
doesn’t expect a response the on_receive return value will be ignored.

The situation is similar in regard to exceptions: when actor_ref.ask() is
used and you raise an exception from within on_receive method it will
propagate to the sender:

import pykka

class Raiser(pykka.ThreadingActor):
 def on_receive(self, message):
 raise Exception('Oops')

actor_ref = Raiser.start()

try:
 actor_ref.ask({'msg': 'How are you?'})
except Exception as e:
 print(repr(e))
 # => Exception('Oops')

Actor proxies

With the basic building blocks provided by actors and futures, we got
everything we need to build more advanced abstractions. Pykka provides a single
abstraction on top of the basic actor model, named “actor proxies”. You can use
Pykka without proxies, but we’ve found it to be a very convenient abstraction
when builing Mopidy [http://www.mopidy.com/].

Let’s create an actor and start it:

import pykka

class Calculator(pykka.ThreadingActor):
 def __init__(self):
 super(Calculator, self).__init__()
 self.last_result = None

 def add(self, a, b=None):
 if b is not None:
 self.last_result = a + b
 else:
 self.last_result += a
 return self.last_result

 def sub(self, a, b=None):
 if b is not None:
 self.last_result = a - b
 else:
 self.last_result -= a
 return self.last_result

actor_ref = Calculator.start()

You can create a proxy from any reference to a running actor:

proxy = actor_ref.proxy()

The proxy object will use introspection to figure out what public attributes
and methods the actor has, and then mirror the full API of the actor. Any
attribute or method prefixed with underscore will be ignored, which is the
convention for keeping stuff private in Python.

When we access attributes or call methods on the proxy, it will ask the actor
to access the given attribute or call the given method, and return the result
to us. All results are wrapped in “future” objects, so you must use the
get() method to get the actual data:

future = proxy.add(1, 3)
future.get()
=> 4

proxy.last_result.get()
=> 4

Since an actor only processes one message at the time and all messages are kept
in order, you don’t need to add the call to get() just to block
processing until the actor has completed processing your last message:

proxy.sub(5)
proxy.add(3)
proxy.last_result.get()
=> 2

Since assignment doesn’t return anything, it works just like on regular
objects:

proxy.last_result = 17
proxy.last_result.get()
=> 17

Under the hood, the proxy does everything by sending messages to the actor
using the regular actor_ref.ask() method we talked about previously.
By doing so, it maintains the actor model restrictions. The only “magic”
happening here is some basic introspection and automatic building of three
different message types; one for method calls, one for attribute reads, and one
for attribute writes.

Traversable attributes on proxies

Sometimes you’ll want to access an actor attribute’s methods or attributes
through a proxy. For this case, Pykka supports “traversable attributes”. By
marking an actor attribute as traversable, Pykka will not return the attribute
when accessed, but wrap it in a new proxy which is returned instead.

To mark an attribute as traversable, simply set the pykka_traversable
attribute to True:

import pykka

class AnActor(pykka.ThreadingActor):
 playback = Playback()

class Playback(object):
 pykka_traversable = True

 def play(self):
 # ...
 return True

proxy = AnActor.start().proxy()
play_success = proxy.playback.play().get()

You can access methods and attributes nested as deep as you like, as long as
all attributes on the path between the actor and the method or attribute on the
end is marked as traversable.

Examples

See the examples/ dir in Pykka’s Git repo [https://github.com/jodal/pykka/] for some runnable examples.

What Pykka is not

Much of the naming of concepts and methods in Pykka is taken from the Akka [http://akka.io/] project which implements actors on the JVM. Though, Pykka
does not aim to be a Python port of Akka, and supports far fewer features.

Notably, Pykka does not support the following features:

	Supervision: Linking actors, supervisors, or supervisor groups.

	Remoting: Communicating with actors running on other hosts.

	Routers: Pykka does not come with a set of predefined message routers, though
you may make your own actors for routing messages.

Installation

Install Pykka’s dependencies:

	Python 2.6, 2.7, or 3.2+

	Optionally, Python 2.6/2.7 only:
	gevent [http://www.gevent.org/], if you want to use gevent based actors
from pykka.gevent.

	eventlet [http://eventlet.net/], if you want to use eventlet based actors
from pykka.eventlet. Eventlet is known to work with PyPy 2.0 as well
but Pykka is not tested with it yet.

To install Pykka you can use pip:

pip install pykka

To upgrade your Pykka installation to the latest released version:

pip install --upgrade pykka

To install the latest development snapshot:

pip install pykka==dev

License

Pykka is copyright 2010-2015 Stein Magnus Jodal and contributors.
Pykka is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0].

Project resources

	Documentation [http://www.pykka.org/]

	Source code [https://github.com/jodal/pykka]

	Issue tracker [https://github.com/jodal/pykka/issues]

	CI server [https://travis-ci.org/jodal/pykka]

	Download development snapshot [https://github.com/jodal/pykka/tarball/develop#egg=pykka-dev]

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/Pykka/][image: Number of PyPI downloads]
 [https://pypi.python.org/pypi/Pykka/][image: Travis CI build status]
 [https://travis-ci.org/jodal/pykka][image: Test coverage]
 [https://coveralls.io/r/jodal/pykka?branch=develop]

Table of contents

	Pykka API
	Actors

	Proxies

	Futures

	Registry

	Gevent support

	Eventlet support

	Logging

	Debug helpers

	Changes
	v1.2.1 (2015-07-20)

	v1.2.0 (2013-07-15)

	v1.1.0 (2013-01-19)

	v1.0.1 (2012-12-12)

	v1.0.0 (2012-10-26)

	v0.16 (2012-09-19)

	v0.15 (2012-08-11)

	v0.14 (2012-04-22)

	v0.13 (2011-09-24)

	v0.12.4 (2011-07-30)

	v0.12.3 (2011-06-25)

	v0.12.2 (2011-05-05)

	v0.12.1 (2011-04-25)

	v0.12 (2011-03-30)

 Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pykka 1.2.1 documentation

Pykka API

	
pykka.__version__

	Pykka’s PEP 386 [https://www.python.org/dev/peps/pep-0386] and PEP 396 [https://www.python.org/dev/peps/pep-0396] compatible version number

Actors

	
exception pykka.ActorDeadError[source]

	Exception raised when trying to use a dead or unavailable actor.

	
class pykka.Actor(*args, **kwargs)[source]

	To create an actor:

	subclass one of the Actor implementations, e.g.
GeventActor or
ThreadingActor,

	implement your methods, including __init__(), as usual,

	call Actor.start() on your actor class, passing the method any
arguments for your constructor.

To stop an actor, call Actor.stop() or ActorRef.stop().

For example:

import pykka

class MyActor(pykka.ThreadingActor):
 def __init__(self, my_arg=None):
 super(MyActor, self).__init__()
 ... # My optional init code with access to start() arguments

 def on_start(self):
 ... # My optional setup code in same context as on_receive()

 def on_stop(self):
 ... # My optional cleanup code in same context as on_receive()

 def on_failure(self, exception_type, exception_value, traceback):
 ... # My optional cleanup code in same context as on_receive()

 def on_receive(self, message):
 ... # My optional message handling code for a plain actor

 def a_method(self, ...):
 ... # My regular method to be used through an ActorProxy

my_actor_ref = MyActor.start(my_arg=...)
my_actor_ref.stop()

	
classmethod start(*args, **kwargs)[source]

	Start an actor and register it in the
ActorRegistry.

Any arguments passed to start() will be passed on to the class
constructor.

Behind the scenes, the following is happening when you call
start():

	The actor is created:
	actor_urn is initialized with the assigned URN.

	actor_inbox is initialized with a new actor inbox.

	actor_ref is initialized with a pykka.ActorRef
object for safely communicating with the actor.

	At this point, your __init__() code can run.

	The actor is registered in pykka.ActorRegistry.

	The actor receive loop is started by the actor’s associated
thread/greenlet.

	Returns:	a ActorRef which can be used to access the actor in
a safe manner

	
actor_urn = None

	The actor URN string is a universally unique identifier for the actor.
It may be used for looking up a specific actor using
ActorRegistry.get_by_urn.

	
actor_inbox = None

	The actor’s inbox. Use ActorRef.tell(), ActorRef.ask(), and
friends to put messages in the inbox.

	
actor_stopped = None

	A threading.Event [http://docs.python.org/2/library/threading.html#threading.Event] representing whether or not the actor should
continue processing messages. Use stop() to change it.

	
actor_ref = None

	The actor’s ActorRef instance.

	
stop()[source]

	Stop the actor.

It’s equivalent to calling ActorRef.stop() with block=False.

	
on_start()[source]

	Hook for doing any setup that should be done after the actor is
started, but before it starts processing messages.

For ThreadingActor, this method is executed in the actor’s own
thread, while __init__() is executed in the thread that created
the actor.

If an exception is raised by this method the stack trace will be
logged, and the actor will stop.

	
on_stop()[source]

	Hook for doing any cleanup that should be done after the actor has
processed the last message, and before the actor stops.

This hook is not called when the actor stops because of an unhandled
exception. In that case, the on_failure() hook is called instead.

For ThreadingActor this method is executed in the actor’s own
thread, immediately before the thread exits.

If an exception is raised by this method the stack trace will be
logged, and the actor will stop.

	
on_failure(exception_type, exception_value, traceback)[source]

	Hook for doing any cleanup after an unhandled exception is raised,
and before the actor stops.

For ThreadingActor this method is executed in the actor’s own
thread, immediately before the thread exits.

The method’s arguments are the relevant information from
sys.exc_info() [http://docs.python.org/2/library/sys.html#sys.exc_info].

If an exception is raised by this method the stack trace will be
logged, and the actor will stop.

	
on_receive(message)[source]

	May be implemented for the actor to handle regular non-proxy messages.

Messages where the value of the “command” key matches “pykka_*” are
reserved for internal use in Pykka.

	Parameters:	message (picklable dict) – the message to handle

	Returns:	anything that should be sent as a reply to the sender

	
class pykka.ThreadingActor(*args, **kwargs)[source]

	ThreadingActor implements Actor using regular Python
threads.

This implementation is slower than GeventActor, but can be used in a process with other
threads that are not Pykka actors.

	
use_daemon_thread = False

	A boolean value indicating whether this actor is executed on a thread that
is a daemon thread (True) or not (False). This must be
set before pykka.Actor.start() is called, otherwise
RuntimeError is raised.

The entire Python program exits when no alive non-daemon threads are left.
This means that an actor running on a daemon thread may be interrupted at
any time, and there is no guarantee that cleanup will be done or that
pykka.Actor.on_stop() will be called.

Actors do not inherit the daemon flag from the actor that made it. It
always has to be set explicitly for the actor to run on a daemonic thread.

	
class pykka.ActorRef(actor)[source]

	Reference to a running actor which may safely be passed around.

ActorRef instances are returned by Actor.start() and the
lookup methods in ActorRegistry. You should
never need to create ActorRef instances yourself.

	Parameters:	actor (Actor) – the actor to wrap

	
actor_class = None

	The class of the referenced actor.

	
actor_urn = None

	See Actor.actor_urn.

	
actor_inbox = None

	See Actor.actor_inbox.

	
actor_stopped = None

	See Actor.actor_stopped.

	
is_alive()[source]

	Check if actor is alive.

This is based on the actor’s stopped flag. The actor is not guaranteed
to be alive and responding even though is_alive() returns
True.

	Returns:	Returns True if actor is alive, False otherwise.

	
tell(message)[source]

	Send message to actor without waiting for any response.

Will generally not block, but if the underlying queue is full it will
block until a free slot is available.

	Parameters:	message (picklable dict) – message to send

	Raise:	pykka.ActorDeadError if actor is not available

	Returns:	nothing

	
ask(message, block=True, timeout=None)[source]

	Send message to actor and wait for the reply.

The message must be a picklable dict.
If block is False, it will immediately return a
Future instead of blocking.

If block is True, and timeout is None, as
default, the method will block until it gets a reply, potentially
forever. If timeout is an integer or float, the method will wait
for a reply for timeout seconds, and then raise
pykka.Timeout.

	Parameters:	
	message (picklable dict) – message to send

	block (boolean) – whether to block while waiting for a reply

	timeout (float or None) – seconds to wait before timeout if blocking

	Raise:	pykka.Timeout if timeout is reached if blocking

	Raise:	any exception returned by the receiving actor if blocking

	Returns:	pykka.Future, or response if blocking

	
stop(block=True, timeout=None)[source]

	Send a message to the actor, asking it to stop.

Returns True if actor is stopped or was being stopped at the
time of the call. False if actor was already dead. If
block is False, it returns a future wrapping the result.

Messages sent to the actor before the actor is asked to stop will
be processed normally before it stops.

Messages sent to the actor after the actor is asked to stop will
be replied to with pykka.ActorDeadError after it stops.

The actor may not be restarted.

block and timeout works as for ask().

	Returns:	pykka.Future, or a boolean result if blocking

	
proxy()[source]

	Wraps the ActorRef in an ActorProxy.

Using this method like this:

proxy = AnActor.start().proxy()

is analogous to:

proxy = ActorProxy(AnActor.start())

	Raise:	pykka.ActorDeadError if actor is not available

	Returns:	pykka.ActorProxy

Proxies

	
class pykka.ActorProxy(actor_ref, attr_path=None)[source]

	An ActorProxy wraps an ActorRef
instance. The proxy allows the referenced actor to be used through regular
method calls and field access.

You can create an ActorProxy from any ActorRef:

actor_ref = MyActor.start()
actor_proxy = ActorProxy(actor_ref)

You can also get an ActorProxy by using proxy():

actor_proxy = MyActor.start().proxy()

When reading an attribute or getting a return value from a method, you get
a Future object back. To get the enclosed value
from the future, you must call get() on the
returned future:

print actor_proxy.string_attribute.get()
print actor_proxy.count().get() + 1

If you call a method just for it’s side effects and do not care about the
return value, you do not need to accept the returned future or call
get() on the future. Simply call the method, and
it will be executed concurrently with your own code:

actor_proxy.method_with_side_effect()

If you want to block your own code from continuing while the other method
is processing, you can use get() to block until
it completes:

actor_proxy.method_with_side_effect().get()

An actor can use a proxy to itself to schedule work for itself. The
scheduled work will only be done after the current message and all messages
already in the inbox are processed.

For example, if an actor can split a time consuming task into multiple
parts, and after completing each part can ask itself to start on the next
part using proxied calls or messages to itself, it can react faster to
other incoming messages as they will be interleaved with the parts of the
time consuming task. This is especially useful for being able to stop the
actor in the middle of a time consuming task.

To create a proxy to yourself, use the actor’s actor_ref attribute:

proxy_to_myself_in_the_future = self.actor_ref.proxy()

If you create a proxy in your actor’s constructor or on_start method, you can create a nice API for deferring
work to yourself in the future:

def __init__(self):
 ...
 self.in_future = self.actor_ref.proxy()
 ...

def do_work(self):
 ...
 self.in_future.do_more_work()
 ...

def do_more_work(self):
 ...

An example of ActorProxy usage:

#! /usr/bin/env python

import pykka

class Adder(pykka.ThreadingActor):

 def add_one(self, i):
 print('{} is increasing {}'.format(self, i))
 return i + 1

class Bookkeeper(pykka.ThreadingActor):

 def __init__(self, adder):
 super(Bookkeeper, self).__init__()
 self.adder = adder

 def count_to(self, target):
 i = 0
 while i < target:
 i = self.adder.add_one(i).get()
 print('{} got {} back'.format(self, i))

if __name__ == '__main__':
 adder = Adder.start().proxy()
 bookkeeper = Bookkeeper.start(adder).proxy()
 bookkeeper.count_to(10).get()
 pykka.ActorRegistry.stop_all()

	Parameters:	actor_ref (pykka.ActorRef) – reference to the actor to proxy

	Raise:	pykka.ActorDeadError if actor is not available

	
actor_ref = None

	The actor’s pykka.ActorRef instance.

Futures

	
exception pykka.Timeout[source]

	Exception raised at future timeout.

	
class pykka.Future[source]

	A Future is a handle to a value which are available or will be
available in the future.

Typically returned by calls to actor methods or accesses to actor fields.

To get hold of the encapsulated value, call Future.get().

	
get(timeout=None)[source]

	Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of
returned.

If timeout is None, as default, the method will block
until it gets a reply, potentially forever. If timeout is an
integer or float, the method will wait for a reply for timeout
seconds, and then raise pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will
only block the first time the value is accessed.

	Parameters:	timeout (float or None) – seconds to wait before timeout

	Raise:	pykka.Timeout if timeout is reached

	Raise:	encapsulated value if it is an exception

	Returns:	encapsulated value if it is not an exception

	
set(value=None)[source]

	Set the encapsulated value.

	Parameters:	value (any picklable object or None) – the encapsulated value or nothing

	Raise:	an exception if set is called multiple times

	
set_exception(exc_info=None)[source]

	Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by
sys.exc_info() [http://docs.python.org/2/library/sys.html#sys.exc_info]. If you don’t pass exc_info,
sys.exc_info() [http://docs.python.org/2/library/sys.html#sys.exc_info] will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any
arguments, from an except block, the exception you’re currently
handling will automatically be set on the future.

Changed in version 0.15: Previously, set_exception() accepted an exception
instance as its only argument. This still works, but it is
deprecated and will be removed in a future release.

	Parameters:	exc_info (three-tuple of (exc_class, exc_instance, traceback)) – the encapsulated exception

	
set_get_hook(func)[source]

	Set a function to be executed when get() is called.

The function will be called when get() is called, with the
timeout value as the only argument. The function’s return value
will be returned from get().

New in version 1.2.

	Parameters:	func (function accepting a timeout value) – called to produce return value of get()

	
filter(func)[source]

	Return a new future with only the items passing the predicate function.

If the future’s value is an iterable, filter() will return a new
future whose value is another iterable with only the items from the
first iterable for which func(item) is true. If the future’s value
isn’t an iterable, a TypeError will be raised when get()
is called.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.filter(lambda x: x > 10)
>>> g
<pykka.future.ThreadingFuture at ...>
>>> f.set(range(5, 15))
>>> f.get()
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> g.get()
[11, 12, 13, 14]

New in version 1.2.

	
join(*futures)[source]

	Return a new future with a list of the result of multiple futures.

One or more futures can be passed as arguments to join(). The new
future returns a list with the results from all the joined futures.

Example:

>>> import pykka
>>> a = pykka.ThreadingFuture()
>>> b = pykka.ThreadingFuture()
>>> c = pykka.ThreadingFuture()
>>> f = a.join(b, c)
>>> a.set('def')
>>> b.set(123)
>>> c.set(False)
>>> f.get()
['def', 123, False]

New in version 1.2.

	
map(func)[source]

	Return a new future with the result of the future passed through a
function.

If the future’s result is a single value, it is simply passed to the
function. If the future’s result is an iterable, the function is
applied to each item in the iterable.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x + 10)
>>> f.set(30)
>>> g.get()
40

>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x + 10)
>>> f.set([30, 300, 3000])
>>> g.get()
[40, 310, 3010]

New in version 1.2.

	
reduce(func[, initial])[source]

	Return a new future with the result of reducing the future’s iterable
into a single value.

The function of two arguments is applied cumulatively to the items of
the iterable, from left to right. The result of the first function call
is used as the first argument to the second function call, and so on,
until the end of the iterable. If the future’s value isn’t an iterable,
a TypeError is raised.

reduce() accepts an optional second argument, which will be used
as an initial value in the first function call. If the iterable is
empty, the initial value is returned.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set(['a', 'b', 'c'])
>>> g.get()
'abc'

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set([1, 2, 3])
>>> (1 + 2) + 3
6
>>> g.get()
6

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([1, 2, 3])
>>> ((5 + 1) + 2) + 3
11
>>> g.get()
11

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([])
>>> g.get()
5

New in version 1.2.

	
class pykka.ThreadingFuture[source]

	ThreadingFuture implements Future for use with
ThreadingActor.

The future is implemented using a Queue.Queue [http://docs.python.org/2/library/queue.html#Queue.Queue].

The future does not make a copy of the object which is set() on it. It is the setters responsibility to only pass
immutable objects or make a copy of the object before setting it on the
future.

Changed in version 0.14: Previously, the encapsulated value was a copy made with
copy.deepcopy() [http://docs.python.org/2/library/copy.html#copy.deepcopy], unless the encapsulated value was a future, in
which case the original future was encapsulated.

	
pykka.get_all(futures, timeout=None)[source]

	Collect all values encapsulated in the list of futures.

If timeout is not None, the method will wait for a reply for
timeout seconds, and then raise pykka.Timeout.

	Parameters:	
	futures (list of pykka.Future) – futures for the results to collect

	timeout (float or None) – seconds to wait before timeout

	Raise:	pykka.Timeout if timeout is reached

	Returns:	list of results

Registry

	
class pykka.ActorRegistry[source]

	Registry which provides easy access to all running actors.

Contains global state, but should be thread-safe.

	
classmethod broadcast(message, target_class=None)[source]

	Broadcast message to all actors of the specified target_class.

If no target_class is specified, the message is broadcasted to all
actors.

	Parameters:	
	message (picklable dict) – the message to send

	target_class (class or class name) – optional actor class to broadcast the message to

	
classmethod get_all()[source]

	Get ActorRef for all running actors.

	Returns:	list of pykka.ActorRef

	
classmethod get_by_class(actor_class)[source]

	Get ActorRef for all running actors of the given class, or of
any subclass of the given class.

	Parameters:	actor_class (class) – actor class, or any superclass of the actor

	Returns:	list of pykka.ActorRef

	
classmethod get_by_class_name(actor_class_name)[source]

	Get ActorRef for all running actors of the given class
name.

	Parameters:	actor_class_name (string [http://docs.python.org/2/library/string.html#module-string]) – actor class name

	Returns:	list of pykka.ActorRef

	
classmethod get_by_urn(actor_urn)[source]

	Get an actor by its universally unique URN.

	Parameters:	actor_urn (string [http://docs.python.org/2/library/string.html#module-string]) – actor URN

	Returns:	pykka.ActorRef or None if not found

	
classmethod register(actor_ref)[source]

	Register an ActorRef in the registry.

This is done automatically when an actor is started, e.g. by calling
Actor.start().

	Parameters:	actor_ref (pykka.ActorRef) – reference to the actor to register

	
classmethod stop_all(block=True, timeout=None)[source]

	Stop all running actors.

block and timeout works as for
ActorRef.stop().

If block is True, the actors are guaranteed to be stopped
in the reverse of the order they were started in. This is helpful if
you have simple dependencies in between your actors, where it is
sufficient to shut down actors in a LIFO manner: last started, first
stopped.

If you have more complex dependencies in between your actors, you
should take care to shut them down in the required order yourself, e.g.
by stopping dependees from a dependency’s
on_stop() method.

	Returns:	If not blocking, a list with a future for each stop action.
If blocking, a list of return values from
pykka.ActorRef.stop().

	
classmethod unregister(actor_ref)[source]

	Remove an ActorRef from the registry.

This is done automatically when an actor is stopped, e.g. by calling
Actor.stop().

	Parameters:	actor_ref (pykka.ActorRef) – reference to the actor to unregister

Gevent support

	
class pykka.gevent.GeventFuture(async_result=None)[source]

	GeventFuture implements pykka.Future for use with
GeventActor.

It encapsulates a gevent.event.AsyncResult object which may be
used directly, though it will couple your code with gevent.

	
async_result = None

	The encapsulated gevent.event.AsyncResult

	
class pykka.gevent.GeventActor(*args, **kwargs)[source]

	GeventActor implements pykka.Actor using the gevent [http://www.gevent.org/] library. gevent is a coroutine-based Python
networking library that uses greenlet to provide a high-level synchronous
API on top of libevent event loop.

This is a very fast implementation, but as of gevent 0.13.x it does not
work in combination with other threads.

Eventlet support

	
class pykka.eventlet.EventletEvent[source]

	EventletEvent adapts eventlet.event.Event to
threading.Event [http://docs.python.org/2/library/threading.html#threading.Event] interface.

	
class pykka.eventlet.EventletFuture[source]

	EventletFuture implements pykka.Future for use with
EventletActor.

	
class pykka.eventlet.EventletActor(*args, **kwargs)[source]

	EventletActor implements pykka.Actor using the eventlet [http://eventlet.net/] library.

This implementation uses eventlet green threads.

Logging

Pykka uses Python’s standard logging [http://docs.python.org/2/library/logging.html#module-logging] module for logging debug statements
and any unhandled exceptions in the actors. All log records emitted by Pykka
are issued to the logger named “pykka”, or a sublogger of it.

Out of the box, Pykka is set up with logging.NullHandler [http://docs.python.org/2/library/logging.handlers.html#logging.NullHandler] as the only
log record handler. This is the recommended approach for logging in
libraries, so that the application developer using the library will have full
control over how the log records from the library will be exposed to the
application’s users. In other words, if you want to see the log records from
Pykka anywhere, you need to add a useful handler to the root logger or the
logger named “pykka” to get any log output from Pykka. The defaults provided by
logging.basicConfig() is enough to get debug log statements out of
Pykka:

import logging
logging.basicConfig(level=logging.DEBUG)

If your application is already using logging [http://docs.python.org/2/library/logging.html#module-logging], and you want debug log
output from your own application, but not from Pykka, you can ignore debug log
messages from Pykka by increasing the threshold on the Pykka logger to “info”
level or higher:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('pykka').setLevel(logging.INFO)

For more details on how to use logging [http://docs.python.org/2/library/logging.html#module-logging], please refer to the Python
standard library documentation.

Debug helpers

	
pykka.debug.log_thread_tracebacks(*args, **kwargs)[source]

	Logs at CRITICAL level a traceback for each running thread.

This can be a convenient tool for debugging deadlocks.

The function accepts any arguments so that it can easily be used as e.g. a
signal handler, but it does not use the arguments for anything.

To use this function as a signal handler, setup logging with a
logging.CRITICAL threshold or lower and make your main thread
register this with the signal [http://docs.python.org/2/library/signal.html#module-signal] module:

import logging
import signal

import pykka.debug

logging.basicConfig(level=logging.DEBUG)
signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

If your application deadlocks, send the SIGUSR1 signal to the process:

kill -SIGUSR1 <pid of your process>

Signal handler caveats:

	The function must be registered as a signal handler by your main
thread. If not, signal.signal() [http://docs.python.org/2/library/signal.html#signal.signal] will raise a ValueError.

	All signals in Python are handled by the main thread. Thus, the signal
will only be handled, and the tracebacks logged, if your main thread is
available to do some work. Making your main thread idle using
time.sleep() [http://docs.python.org/2/library/time.html#time.sleep] is OK. The signal will awaken your main thread.
Blocking your main thread on e.g. Queue.Queue.get() or
pykka.Future.get() will break signal handling, and thus you won’t
be able to signal your process to print the thread tracebacks.

The morale is: setup signals using your main thread, start your actors,
then let your main thread relax for the rest of your application’s life
cycle.

For a complete example of how to use this, see
examples/deadlock_debugging.py in Pykka’s source code.

New in version 1.1.

 Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pykka 1.2.1 documentation

Changes

v1.2.1 (2015-07-20)

	Increase log level of pykka.debug.log_thread_tracebacks() debugging
helper from logging.INFO to logging.CRITICAL.

	Fix errors in docs examples. (PR: #29 [https://github.com/jodal/pykka/issues/29], #43 [https://github.com/jodal/pykka/issues/43])

	Fix typos in docs.

	Various project setup and development improvements.

v1.2.0 (2013-07-15)

	Enforce that multiple calls to pykka.Future.set() raises an exception.
This was already the case for some implementations. The exception raised is
not specified.

	Add pykka.Future.set_get_hook().

	Add filter(), join(),
map(), and reduce() as convenience
methods using the new set_get_hook() method.

	Add support for running actors based on eventlet greenlets. See
pykka.eventlet for details. Thanks to Jakub Stasiak for the
implementation.

	Update documentation to reflect that the reply_to field on the message is
private to Pykka. Actors should reply to messages simply by returning the
response from on_receive(). The internal field is renamed
to pykka_reply_to a to avoid collisions with other message fields. It is
also removed from the message before the message is passed to
on_receive(). Thanks to Jakub Stasiak.

	When messages are left in the actor inbox after the actor is stopped, those
messages that are expecting a reply is now rejected by replying with an
ActorDeadError exception. This causes other actors blocking on
the returned Future without a timeout to raise the exception
instead of waiting forever. Thanks to Jakub Stasiak.

This makes the behavior of messaging an actor around the time it is stopped
more consistent:

	Messaging an already dead actor immediately raises
ActorDeadError.

	Messaging an alive actor that is stopped before it processes the message
will cause the reply future to raise ActorDeadError.

Similarly, if you ask an actor to stop multiple times, and block on the
responses, all the messages will now get an reply. Previously only the first
message got a reply, potentially making the application wait forever on
replies to the subsequent stop messages.

	When ask() is used to asynchronously message a dead
actor (e.g. block set to False), it will no longer immediately
raise ActorDeadError. Instead, it will return a future and
fail the future with the ActorDeadError exception. This makes
the interface more consistent, as you’ll have one instead of two ways the
call can raise exceptions under normal conditions. If
ask() is called synchronously (e.g. block set to
True), the behavior is unchanged.

	A change to stop() reduces the likelyhood of a race
condition when asking an actor to stop multiple times by not checking if the
actor is dead before asking it to stop, but instead just go ahead and leave
it to tell() to do the alive-or-dead check a single
time, and as late as possible.

	Change is_alive() to check the actor’s runnable flag
instead of checking if the actor is registrered in the actor registry.

v1.1.0 (2013-01-19)

	An exception raised in pykka.Actor.on_start() didn’t stop the actor
properly. Thanks to Jay Camp for finding and fixing the bug.

	Make sure exceptions in pykka.Actor.on_stop() and
pykka.Actor.on_failure() is logged.

	Add pykka.ThreadingActor.use_daemon_thread flag for optionally
running an actor on a daemon thread, so that it doesn’t block the Python
program from exiting. (Fixes: #14 [https://github.com/jodal/pykka/issues/14])

	Add pykka.debug.log_thread_tracebacks() debugging helper. (Fixes:
#17 [https://github.com/jodal/pykka/issues/17])

v1.0.1 (2012-12-12)

	Name the threads of pykka.ThreadingActor after the actor class name
instead of “PykkaThreadingActor-N” to ease debugging. (Fixes: #12 [https://github.com/jodal/pykka/issues/12])

v1.0.0 (2012-10-26)

	Backwards incompatible: Removed pykka.VERSION and
pykka.get_version(), which have been deprecated since v0.14. Use
pykka.__version__ instead.

	Backwards incompatible: Removed pykka.ActorRef.send_one_way() and
pykka.ActorRef.send_request_reply(), which have been deprecated since
v0.14. Use pykka.ActorRef.tell() and pykka.ActorRef.ask()
instead.

	Backwards incompatible: Actors no longer subclass
threading.Thread [http://docs.python.org/2/library/threading.html#threading.Thread] or gevent.Greenlet. Instead they have a
thread or greenlet that executes the actor’s main loop.

This is backwards incompatible because you no longer have access to
fields/methods of the thread/greenlet that runs the actor through
fields/methods on the actor itself. This was never advertised in Pykka’s docs
or examples, but the fields/methods have always been available.

As a positive side effect, this fixes an issue on Python 3.x, that was
introduced in Pykka 0.16, where pykka.ThreadingActor would
accidentally override the method threading.Thread._stop().

	Backwards incompatible: Actors that override __init__() must call the method they override. If not, the
actor will no longer be properly initialized. Valid ways to call the
overridden __init__() method include:

super(MyActorSubclass, self).__init__()
or
pykka.ThreadingActor.__init__()
or
pykka.gevent.GeventActor.__init__()

	Make pykka.Actor.__init__() accept any arguments and
keyword arguments by default. This allows you to use super() [http://docs.python.org/2/library/functions.html#super] in
__init__() like this:

super(MyActorSubclass, self).__init__(1, 2, 3, foo='bar')

Without this fix, the above use of super() [http://docs.python.org/2/library/functions.html#super] would cause an exception
because the default implementation of __init__() in
pykka.Actor would not accept the arguments.

	Allow all public classes and functions to be imported directly from the
pykka module. E.g. from pykka.actor import ThreadingActor can now
be written as from pykka import ThreadingActor. The exception is
pykka.gevent, which still needs to be imported from its own package
due to its additional dependency on gevent.

v0.16 (2012-09-19)

	Let actors access themselves through a proxy. See the
pykka.ActorProxy documentation for use cases and usage examples.
(Fixes: #9 [https://github.com/jodal/pykka/issues/9])

	Give proxies direct access to the actor instances for inspecting available
attributes. This access is only used for reading, and works since both
threading and gevent based actors share memory with other actors. This
reduces the creation cost for proxies, which is mostly visible in test suites
that are starting and stopping lots of actors. For the Mopidy test suite the
run time was reduced by about 33%. This change also makes self-proxying
possible.

	Fix bug where pykka.Actor.stop() called by an actor on itself did not
process the remaining messages in the inbox before the actor stopped. The
behavior now matches the documentation.

v0.15 (2012-08-11)

	Change the argument of pykka.Future.set_exception() from an exception
instance to a exc_info three-tuple. Passing just an exception instance to
the method still works, but it is deprecated and may be unsupported in a
future release.

	Due to the above change, pykka.Future.get() will now reraise exceptions
with complete traceback from the point when the exception was first raised,
and not just a traceback from when it was reraised by get(). (Fixes:
#10 [https://github.com/jodal/pykka/issues/10])

v0.14 (2012-04-22)

	Add pykka.__version__ to conform with PEP 396 [https://www.python.org/dev/peps/pep-0396]. This deprecates
pykka.VERSION and pykka.get_version().

	Add pykka.ActorRef.tell() method in favor of now deprecated
pykka.ActorRef.send_one_way().

	Add pykka.ActorRef.ask() method in favor of now deprecated
pykka.ActorRef.send_request_reply().

	ThreadingFuture.set() no longer makes
a copy of the object set on the future. The setter is urged to either only
pass immutable objects through futures or copy the object himself before
setting it on the future. This is a less safe default, but it removes
unecessary overhead in speed and memory usage for users of immutable data
structures. For example, the Mopidy test suite of about 1000 tests, many
which are using Pykka, is still passing after this change, but the test suite
runs approximately 20% faster.

v0.13 (2011-09-24)

	10x speedup of traversible attribute access by reusing proxies.

	1.1x speedup of callable attribute access by reusing proxies.

v0.12.4 (2011-07-30)

	Change and document order in which pykka.ActorRegistry.stop_all() stops
actors. The new order is the reverse of the order the actors were started in.
This should make stop_all work for programs with simple dependency graphs
in between the actors. For applications with more complex dependency graphs,
the developer still needs to pay attention to the shutdown sequence. (Fixes:
#8 [https://github.com/jodal/pykka/issues/8])

v0.12.3 (2011-06-25)

	If an actor that was stopped from pykka.Actor.on_start(), it would
unregister properly, but start the receive loop and forever block on
receiving incoming messages that would never arrive. This left the thread
alive and isolated, ultimately blocking clean shutdown of the program. The
fix ensures that the receive loop is never executed if the actor is stopped
before the receive loop is started.

	Set the thread name of any pykka.ThreadingActor to
PykkaActorThread-N instead of the default Thread-N. This eases
debugging by clearly labeling actor threads in e.g. the output of
threading.enumerate() [http://docs.python.org/2/library/threading.html#threading.enumerate].

	Add utility method pykka.ActorRegistry.broadcast() which broadcasts a
message to all registered actors or to a given class of registred actors.
(Fixes: #7 [https://github.com/jodal/pykka/issues/7])

	Allow multiple calls to pykka.ActorRegistry.unregister() with the same
pykka.actor.ActorRef as argument without throwing a
ValueError. (Fixes: #5 [https://github.com/jodal/pykka/issues/5])

	Make the pykka.ActorProxy‘s reference to its pykka.ActorRef
public as pykka.ActorProxy.actor_ref. The ActorRef instance was
already exposed as a public field by the actor itself using the same name,
but making it public directly on the proxy makes it possible to do e.g.
proxy.actor_ref.is_alive() without waiting for a potentially dead actor
to return an ActorRef instance you can use. (Fixes: #3 [https://github.com/jodal/pykka/issues/3])

v0.12.2 (2011-05-05)

	Actors are now registered in pykka.registry.ActorRegistry before
they are started. This fixes a race condition where an actor tried to stop
and unregister itself before it was registered, causing an exception in
ActorRegistry.unregister().

v0.12.1 (2011-04-25)

	Stop all running actors on BaseException instead of just
KeyboardInterrupt, so that sys.exit(1) will work.

v0.12 (2011-03-30)

	First stable release, as Pykka now is used by the Mopidy [http://www.mopidy.com/] project. From now on, a changelog will be
maintained and we will strive for backwards compatability.

 Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pykka 1.2.1 documentation

 Python Module Index

 d |
 e |
 g |
 p

 			

 		
 d	

 	
 	
 pykka.debug	

 			

 		
 e	

 	
 	
 pykka.eventlet	

 			

 		
 g	

 	
 	
 pykka.gevent	

 			

 		
 p	

 	
 	
 pykka	

 Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pykka 1.2.1 documentation

Index

 _
 | A
 | B
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

_

 	

 	__version__ (in module pykka)

A

 	

 	Actor (class in pykka)

 	actor_class (pykka.ActorRef attribute)

 	actor_inbox (pykka.Actor attribute)

 	

 	(pykka.ActorRef attribute)

 	actor_ref (pykka.Actor attribute)

 	

 	(pykka.ActorProxy attribute)

 	actor_stopped (pykka.Actor attribute)

 	

 	(pykka.ActorRef attribute)

 	actor_urn (pykka.Actor attribute)

 	

 	(pykka.ActorRef attribute)

 	

 	ActorDeadError

 	ActorProxy (class in pykka)

 	ActorRef (class in pykka)

 	ActorRegistry (class in pykka)

 	ask() (pykka.ActorRef method)

 	async_result (pykka.gevent.GeventFuture attribute)

B

 	

 	broadcast() (pykka.ActorRegistry class method)

E

 	

 	EventletActor (class in pykka.eventlet)

 	EventletEvent (class in pykka.eventlet)

 	

 	EventletFuture (class in pykka.eventlet)

F

 	

 	filter() (pykka.Future method)

 	

 	Future (class in pykka)

G

 	

 	get() (pykka.Future method)

 	get_all() (in module pykka)

 	

 	(pykka.ActorRegistry class method)

 	get_by_class() (pykka.ActorRegistry class method)

 	get_by_class_name() (pykka.ActorRegistry class method)

 	

 	get_by_urn() (pykka.ActorRegistry class method)

 	GeventActor (class in pykka.gevent)

 	GeventFuture (class in pykka.gevent)

I

 	

 	is_alive() (pykka.ActorRef method)

J

 	

 	join() (pykka.Future method)

L

 	

 	log_thread_tracebacks() (in module pykka.debug)

M

 	

 	map() (pykka.Future method)

O

 	

 	on_failure() (pykka.Actor method)

 	on_receive() (pykka.Actor method)

 	

 	on_start() (pykka.Actor method)

 	on_stop() (pykka.Actor method)

P

 	

 	proxy() (pykka.ActorRef method)

 	pykka (module)

 	pykka.debug (module)

 	

 	pykka.eventlet (module)

 	pykka.gevent (module)

 	
 Python Enhancement Proposals

 	

 	PEP 386

 	PEP 396, [1]

R

 	

 	reduce() (pykka.Future method)

 	

 	register() (pykka.ActorRegistry class method)

S

 	

 	set() (pykka.Future method)

 	set_exception() (pykka.Future method)

 	set_get_hook() (pykka.Future method)

 	

 	start() (pykka.Actor class method)

 	stop() (pykka.Actor method)

 	

 	(pykka.ActorRef method)

 	stop_all() (pykka.ActorRegistry class method)

T

 	

 	tell() (pykka.ActorRef method)

 	ThreadingActor (class in pykka)

 	

 	ThreadingFuture (class in pykka)

 	Timeout

U

 	

 	unregister() (pykka.ActorRegistry class method)

 	

 	use_daemon_thread (pykka.ThreadingActor attribute)

 Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 All modules for which code is available

		pykka.actor

		pykka.debug

		pykka.eventlet

		pykka.exceptions

		pykka.future

		pykka.gevent

		pykka.proxy

		pykka.registry

		pykka.threading

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/threading.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.threading

from __future__ import absolute_import

import sys
import threading

from pykka import compat
from pykka.actor import Actor
from pykka.exceptions import Timeout
from pykka.future import Future

__all__ = [
 'ThreadingActor',
 'ThreadingFuture',
]

[docs]class ThreadingFuture(Future):

 """
 :class:`ThreadingFuture` implements :class:`Future` for use with
 :class:`ThreadingActor <pykka.ThreadingActor>`.

 The future is implemented using a :class:`Queue.Queue`.

 The future does *not* make a copy of the object which is :meth:`set()
 <pykka.Future.set>` on it. It is the setters responsibility to only pass
 immutable objects or make a copy of the object before setting it on the
 future.

 .. versionchanged:: 0.14
 Previously, the encapsulated value was a copy made with
 :func:`copy.deepcopy`, unless the encapsulated value was a future, in
 which case the original future was encapsulated.
 """

 def __init__(self):
 super(ThreadingFuture, self).__init__()
 self._queue = compat.queue.Queue(maxsize=1)
 self._data = None

 def get(self, timeout=None):
 try:
 return super(ThreadingFuture, self).get(timeout=timeout)
 except NotImplementedError:
 pass

 try:
 if self._data is None:
 self._data = self._queue.get(True, timeout)
 if 'exc_info' in self._data:
 compat.reraise(*self._data['exc_info'])
 else:
 return self._data['value']
 except compat.queue.Empty:
 raise Timeout('%s seconds' % timeout)

 def set(self, value=None):
 self._queue.put({'value': value}, block=False)

 def set_exception(self, exc_info=None):
 if isinstance(exc_info, BaseException):
 exc_info = (exc_info.__class__, exc_info, None)
 self._queue.put({'exc_info': exc_info or sys.exc_info()})

[docs]class ThreadingActor(Actor):

 """
 :class:`ThreadingActor` implements :class:`Actor` using regular Python
 threads.

 This implementation is slower than :class:`GeventActor
 <pykka.gevent.GeventActor>`, but can be used in a process with other
 threads that are not Pykka actors.
 """

 use_daemon_thread = False
 """
 A boolean value indicating whether this actor is executed on a thread that
 is a daemon thread (:class:`True`) or not (:class:`False`). This must be
 set before :meth:`pykka.Actor.start` is called, otherwise
 :exc:`RuntimeError` is raised.

 The entire Python program exits when no alive non-daemon threads are left.
 This means that an actor running on a daemon thread may be interrupted at
 any time, and there is no guarantee that cleanup will be done or that
 :meth:`pykka.Actor.on_stop` will be called.

 Actors do not inherit the daemon flag from the actor that made it. It
 always has to be set explicitly for the actor to run on a daemonic thread.
 """

 @staticmethod
 def _create_actor_inbox():
 return compat.queue.Queue()

 @staticmethod
 def _create_future():
 return ThreadingFuture()

 def _start_actor_loop(self):
 thread = threading.Thread(target=self._actor_loop)
 thread.name = thread.name.replace('Thread', self.__class__.__name__)
 thread.daemon = self.use_daemon_thread
 thread.start()

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/actor.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.actor

from __future__ import absolute_import

import logging
import sys
import threading
import uuid

from pykka.exceptions import ActorDeadError
from pykka.proxy import ActorProxy
from pykka.registry import ActorRegistry

__all__ = [
 'Actor',
 'ActorRef',
]

logger = logging.getLogger('pykka')

[docs]class Actor(object):

 """
 To create an actor:

 1. subclass one of the :class:`Actor` implementations, e.g.
 :class:`GeventActor <pykka.gevent.GeventActor>` or
 :class:`ThreadingActor`,
 2. implement your methods, including :meth:`__init__`, as usual,
 3. call :meth:`Actor.start` on your actor class, passing the method any
 arguments for your constructor.

 To stop an actor, call :meth:`Actor.stop()` or :meth:`ActorRef.stop()`.

 For example::

 import pykka

 class MyActor(pykka.ThreadingActor):
 def __init__(self, my_arg=None):
 super(MyActor, self).__init__()
 ... # My optional init code with access to start() arguments

 def on_start(self):
 ... # My optional setup code in same context as on_receive()

 def on_stop(self):
 ... # My optional cleanup code in same context as on_receive()

 def on_failure(self, exception_type, exception_value, traceback):
 ... # My optional cleanup code in same context as on_receive()

 def on_receive(self, message):
 ... # My optional message handling code for a plain actor

 def a_method(self, ...):
 ... # My regular method to be used through an ActorProxy

 my_actor_ref = MyActor.start(my_arg=...)
 my_actor_ref.stop()
 """

 @classmethod
[docs] def start(cls, *args, **kwargs):
 """
 Start an actor and register it in the
 :class:`ActorRegistry <pykka.ActorRegistry>`.

 Any arguments passed to :meth:`start` will be passed on to the class
 constructor.

 Behind the scenes, the following is happening when you call
 :meth:`start`:

 1. The actor is created:

 1. :attr:`actor_urn` is initialized with the assigned URN.

 2. :attr:`actor_inbox` is initialized with a new actor inbox.

 3. :attr:`actor_ref` is initialized with a :class:`pykka.ActorRef`
 object for safely communicating with the actor.

 4. At this point, your :meth:`__init__()` code can run.

 2. The actor is registered in :class:`pykka.ActorRegistry`.

 3. The actor receive loop is started by the actor's associated
 thread/greenlet.

 :returns: a :class:`ActorRef` which can be used to access the actor in
 a safe manner
 """
 obj = cls(*args, **kwargs)
 assert obj.actor_ref is not None, (
 'Actor.__init__() have not been called. '
 'Did you forget to call super() in your override?')
 ActorRegistry.register(obj.actor_ref)
 logger.debug('Starting %s', obj)
 obj._start_actor_loop()
 return obj.actor_ref

 @staticmethod
 def _create_actor_inbox():
 """Internal method for implementors of new actor types."""
 raise NotImplementedError('Use a subclass of Actor')

 @staticmethod
 def _create_future():
 """Internal method for implementors of new actor types."""
 raise NotImplementedError('Use a subclass of Actor')

 def _start_actor_loop(self):
 """Internal method for implementors of new actor types."""
 raise NotImplementedError('Use a subclass of Actor')

 #: The actor URN string is a universally unique identifier for the actor.
 #: It may be used for looking up a specific actor using
 #: :meth:`ActorRegistry.get_by_urn
 #: <pykka.ActorRegistry.get_by_urn>`.
 actor_urn = None

 #: The actor's inbox. Use :meth:`ActorRef.tell`, :meth:`ActorRef.ask`, and
 #: friends to put messages in the inbox.
 actor_inbox = None

 #: The actor's :class:`ActorRef` instance.
 actor_ref = None

 #: A :class:`threading.Event` representing whether or not the actor should
 #: continue processing messages. Use :meth:`stop` to change it.
 actor_stopped = None

 def __init__(self, *args, **kwargs):
 """
 Your are free to override :meth:`__init__`, but you must call your
 superclass' :meth:`__init__` to ensure that fields :attr:`actor_urn`,
 :attr:`actor_inbox`, and :attr:`actor_ref` are initialized.

 You can use :func:`super`::

 super(MyActor, self).__init__()

 Or call you superclass directly::

 pykka.ThreadingActor.__init__(self)
 # or
 pykka.gevent.GeventActor.__init__(self)

 :meth:`__init__` is called before the actor is started and registered
 in :class:`ActorRegistry <pykka.ActorRegistry>`.
 """
 self.actor_urn = uuid.uuid4().urn
 self.actor_inbox = self._create_actor_inbox()
 self.actor_stopped = threading.Event()

 self.actor_ref = ActorRef(self)

 def __str__(self):
 return '%(class)s (%(urn)s)' % {
 'class': self.__class__.__name__,
 'urn': self.actor_urn,
 }

[docs] def stop(self):
 """
 Stop the actor.

 It's equivalent to calling :meth:`ActorRef.stop` with ``block=False``.
 """
 self.actor_ref.tell({'command': 'pykka_stop'})

 def _stop(self):
 """
 Stops the actor immediately without processing the rest of the inbox.
 """
 ActorRegistry.unregister(self.actor_ref)
 self.actor_stopped.set()
 logger.debug('Stopped %s', self)
 try:
 self.on_stop()
 except Exception:
 self._handle_failure(*sys.exc_info())

 def _actor_loop(self):
 """
 The actor's event loop.

 This is the method that will be executed by the thread or greenlet.
 """
 try:
 self.on_start()
 except Exception:
 self._handle_failure(*sys.exc_info())

 while not self.actor_stopped.is_set():
 message = self.actor_inbox.get()
 reply_to = None
 try:
 reply_to = message.pop('pykka_reply_to', None)
 response = self._handle_receive(message)
 if reply_to:
 reply_to.set(response)
 except Exception:
 if reply_to:
 logger.debug(
 'Exception returned from %s to caller:' % self,
 exc_info=sys.exc_info())
 reply_to.set_exception()
 else:
 self._handle_failure(*sys.exc_info())
 try:
 self.on_failure(*sys.exc_info())
 except Exception:
 self._handle_failure(*sys.exc_info())
 except BaseException:
 exception_value = sys.exc_info()[1]
 logger.debug(
 '%s in %s. Stopping all actors.' %
 (repr(exception_value), self))
 self._stop()
 ActorRegistry.stop_all()

 while not self.actor_inbox.empty():
 msg = self.actor_inbox.get()
 reply_to = msg.pop('pykka_reply_to', None)
 if reply_to:
 if msg.get('command') == 'pykka_stop':
 reply_to.set(None)
 else:
 reply_to.set_exception(ActorDeadError(
 '%s stopped before handling the message' %
 self.actor_ref))

[docs] def on_start(self):
 """
 Hook for doing any setup that should be done *after* the actor is
 started, but *before* it starts processing messages.

 For :class:`ThreadingActor`, this method is executed in the actor's own
 thread, while :meth:`__init__` is executed in the thread that created
 the actor.

 If an exception is raised by this method the stack trace will be
 logged, and the actor will stop.
 """
 pass

[docs] def on_stop(self):
 """
 Hook for doing any cleanup that should be done *after* the actor has
 processed the last message, and *before* the actor stops.

 This hook is *not* called when the actor stops because of an unhandled
 exception. In that case, the :meth:`on_failure` hook is called instead.

 For :class:`ThreadingActor` this method is executed in the actor's own
 thread, immediately before the thread exits.

 If an exception is raised by this method the stack trace will be
 logged, and the actor will stop.
 """
 pass

 def _handle_failure(self, exception_type, exception_value, traceback):
 """Logs unexpected failures, unregisters and stops the actor."""
 logger.error(
 'Unhandled exception in %s:' % self,
 exc_info=(exception_type, exception_value, traceback))
 ActorRegistry.unregister(self.actor_ref)
 self.actor_stopped.set()

[docs] def on_failure(self, exception_type, exception_value, traceback):
 """
 Hook for doing any cleanup *after* an unhandled exception is raised,
 and *before* the actor stops.

 For :class:`ThreadingActor` this method is executed in the actor's own
 thread, immediately before the thread exits.

 The method's arguments are the relevant information from
 :func:`sys.exc_info`.

 If an exception is raised by this method the stack trace will be
 logged, and the actor will stop.
 """
 pass

 def _handle_receive(self, message):
 """Handles messages sent to the actor."""
 if message.get('command') == 'pykka_stop':
 return self._stop()
 if message.get('command') == 'pykka_call':
 callee = self._get_attribute_from_path(message['attr_path'])
 return callee(*message['args'], **message['kwargs'])
 if message.get('command') == 'pykka_getattr':
 attr = self._get_attribute_from_path(message['attr_path'])
 return attr
 if message.get('command') == 'pykka_setattr':
 parent_attr = self._get_attribute_from_path(
 message['attr_path'][:-1])
 attr_name = message['attr_path'][-1]
 return setattr(parent_attr, attr_name, message['value'])
 return self.on_receive(message)

[docs] def on_receive(self, message):
 """
 May be implemented for the actor to handle regular non-proxy messages.

 Messages where the value of the "command" key matches "pykka_*" are
 reserved for internal use in Pykka.

 :param message: the message to handle
 :type message: picklable dict

 :returns: anything that should be sent as a reply to the sender
 """
 logger.warning('Unexpected message received by %s: %s', self, message)

 def _get_attribute_from_path(self, attr_path):
 """
 Traverses the path and returns the attribute at the end of the path.
 """
 attr = self
 for attr_name in attr_path:
 attr = getattr(attr, attr_name)
 return attr

[docs]class ActorRef(object):

 """
 Reference to a running actor which may safely be passed around.

 :class:`ActorRef` instances are returned by :meth:`Actor.start` and the
 lookup methods in :class:`ActorRegistry <pykka.ActorRegistry>`. You should
 never need to create :class:`ActorRef` instances yourself.

 :param actor: the actor to wrap
 :type actor: :class:`Actor`
 """

 #: The class of the referenced actor.
 actor_class = None

 #: See :attr:`Actor.actor_urn`.
 actor_urn = None

 #: See :attr:`Actor.actor_inbox`.
 actor_inbox = None

 #: See :attr:`Actor.actor_stopped`.
 actor_stopped = None

 def __init__(self, actor):
 self._actor = actor
 self.actor_class = actor.__class__
 self.actor_urn = actor.actor_urn
 self.actor_inbox = actor.actor_inbox
 self.actor_stopped = actor.actor_stopped

 def __repr__(self):
 return '<ActorRef for %s>' % str(self)

 def __str__(self):
 return '%(class)s (%(urn)s)' % {
 'urn': self.actor_urn,
 'class': self.actor_class.__name__,
 }

[docs] def is_alive(self):
 """
 Check if actor is alive.

 This is based on the actor's stopped flag. The actor is not guaranteed
 to be alive and responding even though :meth:`is_alive` returns
 :class:`True`.

 :return:
 Returns :class:`True` if actor is alive, :class:`False` otherwise.
 """
 return not self.actor_stopped.is_set()

[docs] def tell(self, message):
 """
 Send message to actor without waiting for any response.

 Will generally not block, but if the underlying queue is full it will
 block until a free slot is available.

 :param message: message to send
 :type message: picklable dict

 :raise: :exc:`pykka.ActorDeadError` if actor is not available
 :return: nothing
 """
 if not self.is_alive():
 raise ActorDeadError('%s not found' % self)
 self.actor_inbox.put(message)

[docs] def ask(self, message, block=True, timeout=None):
 """
 Send message to actor and wait for the reply.

 The message must be a picklable dict.
 If ``block`` is :class:`False`, it will immediately return a
 :class:`Future <pykka.Future>` instead of blocking.

 If ``block`` is :class:`True`, and ``timeout`` is :class:`None`, as
 default, the method will block until it gets a reply, potentially
 forever. If ``timeout`` is an integer or float, the method will wait
 for a reply for ``timeout`` seconds, and then raise
 :exc:`pykka.Timeout`.

 :param message: message to send
 :type message: picklable dict

 :param block: whether to block while waiting for a reply
 :type block: boolean

 :param timeout: seconds to wait before timeout if blocking
 :type timeout: float or :class:`None`

 :raise: :exc:`pykka.Timeout` if timeout is reached if blocking
 :raise: any exception returned by the receiving actor if blocking
 :return: :class:`pykka.Future`, or response if blocking
 """
 future = self.actor_class._create_future()
 message['pykka_reply_to'] = future
 try:
 self.tell(message)
 except ActorDeadError:
 future.set_exception()
 if block:
 return future.get(timeout=timeout)
 else:
 return future

[docs] def stop(self, block=True, timeout=None):
 """
 Send a message to the actor, asking it to stop.

 Returns :class:`True` if actor is stopped or was being stopped at the
 time of the call. :class:`False` if actor was already dead. If
 ``block`` is :class:`False`, it returns a future wrapping the result.

 Messages sent to the actor before the actor is asked to stop will
 be processed normally before it stops.

 Messages sent to the actor after the actor is asked to stop will
 be replied to with :exc:`pykka.ActorDeadError` after it stops.

 The actor may not be restarted.

 ``block`` and ``timeout`` works as for :meth:`ask`.

 :return: :class:`pykka.Future`, or a boolean result if blocking
 """
 ask_future = self.ask({'command': 'pykka_stop'}, block=False)

 def _stop_result_converter(timeout):
 try:
 ask_future.get(timeout=timeout)
 return True
 except ActorDeadError:
 return False

 converted_future = ask_future.__class__()
 converted_future.set_get_hook(_stop_result_converter)

 if block:
 return converted_future.get(timeout=timeout)
 else:
 return converted_future

[docs] def proxy(self):
 """
 Wraps the :class:`ActorRef` in an :class:`ActorProxy
 <pykka.ActorProxy>`.

 Using this method like this::

 proxy = AnActor.start().proxy()

 is analogous to::

 proxy = ActorProxy(AnActor.start())

 :raise: :exc:`pykka.ActorDeadError` if actor is not available
 :return: :class:`pykka.ActorProxy`
 """
 return ActorProxy(self)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/eventlet.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.eventlet

from __future__ import absolute_import

import sys

import eventlet
import eventlet.event
import eventlet.queue

from pykka import Timeout
from pykka.actor import Actor
from pykka.future import Future

__all__ = [
 'EventletActor',
 'EventletEvent',
 'EventletFuture',
]

[docs]class EventletEvent(eventlet.event.Event):

 """
 :class:`EventletEvent` adapts :class:`eventlet.event.Event` to
 :class:`threading.Event` interface.
 """

 def set(self):
 if self.ready():
 self.reset()
 self.send()

 def is_set(self):
 return self.ready()

 isSet = is_set

 def clear(self):
 if self.ready():
 self.reset()

 def wait(self, timeout):
 if timeout is not None:
 wait_timeout = eventlet.Timeout(timeout)

 try:
 with wait_timeout:
 super(EventletEvent, self).wait()
 except eventlet.Timeout as t:
 if t is not wait_timeout:
 raise
 return False
 else:
 self.event.wait()

 return True

[docs]class EventletFuture(Future):

 """
 :class:`EventletFuture` implements :class:`pykka.Future` for use with
 :class:`EventletActor`.
 """

 event = None

 def __init__(self):
 super(EventletFuture, self).__init__()
 self.event = eventlet.event.Event()

 def get(self, timeout=None):
 try:
 return super(EventletFuture, self).get(timeout=timeout)
 except NotImplementedError:
 pass

 if timeout is not None:
 wait_timeout = eventlet.Timeout(timeout)
 try:
 with wait_timeout:
 return self.event.wait()
 except eventlet.Timeout as t:
 if t is not wait_timeout:
 raise
 raise Timeout(t)
 else:
 return self.event.wait()

 def set(self, value=None):
 self.event.send(value)

 def set_exception(self, exc_info=None):
 if isinstance(exc_info, BaseException):
 exc_info = (exc_info,)
 self.event.send_exception(*(exc_info or sys.exc_info()))

[docs]class EventletActor(Actor):

 """
 :class:`EventletActor` implements :class:`pykka.Actor` using the `eventlet
 <http://eventlet.net/>`_ library.

 This implementation uses eventlet green threads.
 """

 @staticmethod
 def _create_actor_inbox():
 return eventlet.queue.Queue()

 @staticmethod
 def _create_future():
 return EventletFuture()

 def _start_actor_loop(self):
 eventlet.greenthread.spawn(self._actor_loop)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/proxy.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.proxy

import collections
import sys

from pykka.exceptions import ActorDeadError

__all__ = [
 'ActorProxy',
]

[docs]class ActorProxy(object):

 """
 An :class:`ActorProxy` wraps an :class:`ActorRef <pykka.ActorRef>`
 instance. The proxy allows the referenced actor to be used through regular
 method calls and field access.

 You can create an :class:`ActorProxy` from any :class:`ActorRef
 <pykka.ActorRef>`::

 actor_ref = MyActor.start()
 actor_proxy = ActorProxy(actor_ref)

 You can also get an :class:`ActorProxy` by using :meth:`proxy()
 <pykka.ActorRef.proxy>`::

 actor_proxy = MyActor.start().proxy()

 When reading an attribute or getting a return value from a method, you get
 a :class:`Future <pykka.Future>` object back. To get the enclosed value
 from the future, you must call :meth:`get() <pykka.Future.get>` on the
 returned future::

 print actor_proxy.string_attribute.get()
 print actor_proxy.count().get() + 1

 If you call a method just for it's side effects and do not care about the
 return value, you do not need to accept the returned future or call
 :meth:`get() <pykka.Future.get>` on the future. Simply call the method, and
 it will be executed concurrently with your own code::

 actor_proxy.method_with_side_effect()

 If you want to block your own code from continuing while the other method
 is processing, you can use :meth:`get() <pykka.Future.get>` to block until
 it completes::

 actor_proxy.method_with_side_effect().get()

 An actor can use a proxy to itself to schedule work for itself. The
 scheduled work will only be done after the current message and all messages
 already in the inbox are processed.

 For example, if an actor can split a time consuming task into multiple
 parts, and after completing each part can ask itself to start on the next
 part using proxied calls or messages to itself, it can react faster to
 other incoming messages as they will be interleaved with the parts of the
 time consuming task. This is especially useful for being able to stop the
 actor in the middle of a time consuming task.

 To create a proxy to yourself, use the actor's :attr:`actor_ref
 <pykka.Actor.actor_ref>` attribute::

 proxy_to_myself_in_the_future = self.actor_ref.proxy()

 If you create a proxy in your actor's constructor or :meth:`on_start
 <pykka.Actor.on_start>` method, you can create a nice API for deferring
 work to yourself in the future::

 def __init__(self):
 ...
 self.in_future = self.actor_ref.proxy()
 ...

 def do_work(self):
 ...
 self.in_future.do_more_work()
 ...

 def do_more_work(self):
 ...

 An example of :class:`ActorProxy` usage:

 .. literalinclude:: ../examples/counter.py

 :param actor_ref: reference to the actor to proxy
 :type actor_ref: :class:`pykka.ActorRef`

 :raise: :exc:`pykka.ActorDeadError` if actor is not available
 """

 #: The actor's :class:`pykka.ActorRef` instance.
 actor_ref = None

 def __init__(self, actor_ref, attr_path=None):
 if not actor_ref.is_alive():
 raise ActorDeadError('%s not found' % actor_ref)
 self.actor_ref = actor_ref
 self._actor = actor_ref._actor
 self._attr_path = attr_path or tuple()
 self._known_attrs = self._get_attributes()
 self._actor_proxies = {}
 self._callable_proxies = {}

 def _get_attributes(self):
 """Gathers actor attributes needed to proxy the actor"""
 result = {}
 attr_paths_to_visit = [[attr_name] for attr_name in dir(self._actor)]
 while attr_paths_to_visit:
 attr_path = attr_paths_to_visit.pop(0)
 if self._is_exposable_attribute(attr_path[-1]):
 attr = self._actor._get_attribute_from_path(attr_path)
 result[tuple(attr_path)] = {
 'callable': self._is_callable_attribute(attr),
 'traversable': self._is_traversable_attribute(attr),
 }
 if self._is_traversable_attribute(attr):
 for attr_name in dir(attr):
 attr_paths_to_visit.append(attr_path + [attr_name])
 return result

 def _is_exposable_attribute(self, attr_name):
 """
 Returns true for any attribute name that may be exposed through
 :class:`ActorProxy`.
 """
 return not attr_name.startswith('_')

 def _is_callable_attribute(self, attr):
 """Returns true for any attribute that is callable."""
 # isinstance(attr, collections.Callable), as recommended by 2to3, does
 # not work on CPython 2.6.4 if the attribute is an Queue.Queue, but
 # works on 2.6.6.
 if sys.version_info < (3,):
 return callable(attr)
 else:
 return isinstance(attr, collections.Callable)

 def _is_traversable_attribute(self, attr):
 """
 Returns true for any attribute that may be traversed from another
 actor through a proxy.
 """
 return hasattr(attr, 'pykka_traversable')

 def __repr__(self):
 return '<ActorProxy for %s, attr_path=%s>' % (
 self.actor_ref, self._attr_path)

 def __dir__(self):
 result = ['__class__']
 result += list(self.__class__.__dict__.keys())
 result += list(self.__dict__.keys())
 result += [
 attr_path[0] for attr_path in list(self._known_attrs.keys())]
 return sorted(result)

 def __getattr__(self, name):
 """Get a field or callable from the actor."""
 attr_path = self._attr_path + (name,)
 if attr_path not in self._known_attrs:
 self._known_attrs = self._get_attributes()
 attr_info = self._known_attrs.get(attr_path)
 if attr_info is None:
 raise AttributeError('%s has no attribute "%s"' % (self, name))
 if attr_info['callable']:
 if attr_path not in self._callable_proxies:
 self._callable_proxies[attr_path] = _CallableProxy(
 self.actor_ref, attr_path)
 return self._callable_proxies[attr_path]
 elif attr_info['traversable']:
 if attr_path not in self._actor_proxies:
 self._actor_proxies[attr_path] = ActorProxy(
 self.actor_ref, attr_path)
 return self._actor_proxies[attr_path]
 else:
 message = {
 'command': 'pykka_getattr',
 'attr_path': attr_path,
 }
 return self.actor_ref.ask(message, block=False)

 def __setattr__(self, name, value):
 """
 Set a field on the actor.

 Blocks until the field is set to check if any exceptions was raised.
 """
 if name == 'actor_ref' or name.startswith('_'):
 return super(ActorProxy, self).__setattr__(name, value)
 attr_path = self._attr_path + (name,)
 message = {
 'command': 'pykka_setattr',
 'attr_path': attr_path,
 'value': value,
 }
 return self.actor_ref.ask(message)

class _CallableProxy(object):

 """Internal helper class for proxying callables."""

 def __init__(self, ref, attr_path):
 self.actor_ref = ref
 self._attr_path = attr_path

 def __call__(self, *args, **kwargs):
 message = {
 'command': 'pykka_call',
 'attr_path': self._attr_path,
 'args': args,
 'kwargs': kwargs,
 }
 return self.actor_ref.ask(message, block=False)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.exceptions

__all__ = [
 'ActorDeadError',
 'Timeout',
]

[docs]class ActorDeadError(Exception):

 """Exception raised when trying to use a dead or unavailable actor."""
 pass

[docs]class Timeout(Exception):

 """Exception raised at future timeout."""
 pass

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/future.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.future

import collections
import functools

from pykka import compat

__all__ = [
 'Future',
 'get_all',
]

def _is_iterable(x):
 return (
 isinstance(x, collections.Iterable) and
 not isinstance(x, compat.string_types))

def _map(func, *iterables):
 if len(iterables) == 1 and not _is_iterable(iterables[0]):
 return func(iterables[0])
 else:
 return list(map(func, *iterables))

[docs]class Future(object):

 """
 A :class:`Future` is a handle to a value which are available or will be
 available in the future.

 Typically returned by calls to actor methods or accesses to actor fields.

 To get hold of the encapsulated value, call :meth:`Future.get`.
 """

 def __init__(self):
 super(Future, self).__init__()
 self._get_hook = None

[docs] def get(self, timeout=None):
 """
 Get the value encapsulated by the future.

 If the encapsulated value is an exception, it is raised instead of
 returned.

 If ``timeout`` is :class:`None`, as default, the method will block
 until it gets a reply, potentially forever. If ``timeout`` is an
 integer or float, the method will wait for a reply for ``timeout``
 seconds, and then raise :exc:`pykka.Timeout`.

 The encapsulated value can be retrieved multiple times. The future will
 only block the first time the value is accessed.

 :param timeout: seconds to wait before timeout
 :type timeout: float or :class:`None`

 :raise: :exc:`pykka.Timeout` if timeout is reached
 :raise: encapsulated value if it is an exception
 :return: encapsulated value if it is not an exception
 """
 if self._get_hook is not None:
 return self._get_hook(timeout)
 raise NotImplementedError

[docs] def set(self, value=None):
 """
 Set the encapsulated value.

 :param value: the encapsulated value or nothing
 :type value: any picklable object or :class:`None`
 :raise: an exception if set is called multiple times
 """
 raise NotImplementedError

[docs] def set_exception(self, exc_info=None):
 """
 Set an exception as the encapsulated value.

 You can pass an ``exc_info`` three-tuple, as returned by
 :func:`sys.exc_info`. If you don't pass ``exc_info``,
 :func:`sys.exc_info` will be called and the value returned by it used.

 In other words, if you're calling :meth:`set_exception`, without any
 arguments, from an except block, the exception you're currently
 handling will automatically be set on the future.

 .. versionchanged:: 0.15
 Previously, :meth:`set_exception` accepted an exception
 instance as its only argument. This still works, but it is
 deprecated and will be removed in a future release.

 :param exc_info: the encapsulated exception
 :type exc_info: three-tuple of (exc_class, exc_instance, traceback)
 """
 raise NotImplementedError

[docs] def set_get_hook(self, func):
 """
 Set a function to be executed when :meth:`get` is called.

 The function will be called when :meth:`get` is called, with the
 ``timeout`` value as the only argument. The function's return value
 will be returned from :meth:`get`.

 .. versionadded:: 1.2

 :param func: called to produce return value of :meth:`get`
 :type func: function accepting a timeout value
 """
 self._get_hook = func

[docs] def filter(self, func):
 """
 Return a new future with only the items passing the predicate function.

 If the future's value is an iterable, :meth:`filter` will return a new
 future whose value is another iterable with only the items from the
 first iterable for which ``func(item)`` is true. If the future's value
 isn't an iterable, a :exc:`TypeError` will be raised when :meth:`get`
 is called.

 Example::

 >>> import pykka
 >>> f = pykka.ThreadingFuture()
 >>> g = f.filter(lambda x: x > 10)
 >>> g
 <pykka.future.ThreadingFuture at ...>
 >>> f.set(range(5, 15))
 >>> f.get()
 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
 >>> g.get()
 [11, 12, 13, 14]

 .. versionadded:: 1.2
 """
 future = self.__class__()
 future.set_get_hook(lambda timeout: list(filter(
 func, self.get(timeout))))
 return future

[docs] def join(self, *futures):
 """
 Return a new future with a list of the result of multiple futures.

 One or more futures can be passed as arguments to :meth:`join`. The new
 future returns a list with the results from all the joined futures.

 Example::

 >>> import pykka
 >>> a = pykka.ThreadingFuture()
 >>> b = pykka.ThreadingFuture()
 >>> c = pykka.ThreadingFuture()
 >>> f = a.join(b, c)
 >>> a.set('def')
 >>> b.set(123)
 >>> c.set(False)
 >>> f.get()
 ['def', 123, False]

 .. versionadded:: 1.2
 """
 future = self.__class__()
 future.set_get_hook(lambda timeout: [
 f.get(timeout) for f in [self] + list(futures)])
 return future

[docs] def map(self, func):
 """
 Return a new future with the result of the future passed through a
 function.

 If the future's result is a single value, it is simply passed to the
 function. If the future's result is an iterable, the function is
 applied to each item in the iterable.

 Example::

 >>> import pykka
 >>> f = pykka.ThreadingFuture()
 >>> g = f.map(lambda x: x + 10)
 >>> f.set(30)
 >>> g.get()
 40

 >>> f = pykka.ThreadingFuture()
 >>> g = f.map(lambda x: x + 10)
 >>> f.set([30, 300, 3000])
 >>> g.get()
 [40, 310, 3010]

 .. versionadded:: 1.2
 """
 future = self.__class__()
 future.set_get_hook(lambda timeout: _map(func, self.get(timeout)))
 return future

[docs] def reduce(self, func, *args):
 """
 reduce(func[, initial])

 Return a new future with the result of reducing the future's iterable
 into a single value.

 The function of two arguments is applied cumulatively to the items of
 the iterable, from left to right. The result of the first function call
 is used as the first argument to the second function call, and so on,
 until the end of the iterable. If the future's value isn't an iterable,
 a :exc:`TypeError` is raised.

 :meth:`reduce` accepts an optional second argument, which will be used
 as an initial value in the first function call. If the iterable is
 empty, the initial value is returned.

 Example::

 >>> import pykka
 >>> f = pykka.ThreadingFuture()
 >>> g = f.reduce(lambda x, y: x + y)
 >>> f.set(['a', 'b', 'c'])
 >>> g.get()
 'abc'

 >>> f = pykka.ThreadingFuture()
 >>> g = f.reduce(lambda x, y: x + y)
 >>> f.set([1, 2, 3])
 >>> (1 + 2) + 3
 6
 >>> g.get()
 6

 >>> f = pykka.ThreadingFuture()
 >>> g = f.reduce(lambda x, y: x + y, 5)
 >>> f.set([1, 2, 3])
 >>> ((5 + 1) + 2) + 3
 11
 >>> g.get()
 11

 >>> f = pykka.ThreadingFuture()
 >>> g = f.reduce(lambda x, y: x + y, 5)
 >>> f.set([])
 >>> g.get()
 5

 .. versionadded:: 1.2
 """
 future = self.__class__()
 future.set_get_hook(lambda timeout: functools.reduce(
 func, self.get(timeout), *args))
 return future

[docs]def get_all(futures, timeout=None):
 """
 Collect all values encapsulated in the list of futures.

 If ``timeout`` is not :class:`None`, the method will wait for a reply for
 ``timeout`` seconds, and then raise :exc:`pykka.Timeout`.

 :param futures: futures for the results to collect
 :type futures: list of :class:`pykka.Future`

 :param timeout: seconds to wait before timeout
 :type timeout: float or :class:`None`

 :raise: :exc:`pykka.Timeout` if timeout is reached
 :returns: list of results
 """
 return [future.get(timeout=timeout) for future in futures]

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/gevent.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.gevent

from __future__ import absolute_import

import sys

import gevent
import gevent.event
import gevent.queue

from pykka import Timeout
from pykka.actor import Actor
from pykka.future import Future

__all__ = [
 'GeventActor',
 'GeventFuture',
]

[docs]class GeventFuture(Future):

 """
 :class:`GeventFuture` implements :class:`pykka.Future` for use with
 :class:`GeventActor`.

 It encapsulates a :class:`gevent.event.AsyncResult` object which may be
 used directly, though it will couple your code with gevent.
 """

 #: The encapsulated :class:`gevent.event.AsyncResult`
 async_result = None

 def __init__(self, async_result=None):
 super(GeventFuture, self).__init__()
 if async_result is not None:
 self.async_result = async_result
 else:
 self.async_result = gevent.event.AsyncResult()

 def get(self, timeout=None):
 try:
 return super(GeventFuture, self).get(timeout=timeout)
 except NotImplementedError:
 pass

 try:
 return self.async_result.get(timeout=timeout)
 except gevent.Timeout as e:
 raise Timeout(e)

 def set(self, value=None):
 assert not self.async_result.ready(), 'value has already been set'
 self.async_result.set(value)

 def set_exception(self, exc_info=None):
 if isinstance(exc_info, BaseException):
 exception = exc_info
 else:
 exc_info = exc_info or sys.exc_info()
 exception = exc_info[1]
 self.async_result.set_exception(exception)

[docs]class GeventActor(Actor):

 """
 :class:`GeventActor` implements :class:`pykka.Actor` using the `gevent
 <http://www.gevent.org/>`_ library. gevent is a coroutine-based Python
 networking library that uses greenlet to provide a high-level synchronous
 API on top of libevent event loop.

 This is a very fast implementation, but as of gevent 0.13.x it does not
 work in combination with other threads.
 """

 @staticmethod
 def _create_actor_inbox():
 return gevent.queue.Queue()

 @staticmethod
 def _create_future():
 return GeventFuture()

 def _start_actor_loop(self):
 gevent.Greenlet.spawn(self._actor_loop)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/debug.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.debug

from __future__ import absolute_import

import logging
import sys
import threading
import traceback

logger = logging.getLogger('pykka')

__all__ = [
 'log_thread_tracebacks',
]

[docs]def log_thread_tracebacks(*args, **kwargs):
 """Logs at ``CRITICAL`` level a traceback for each running thread.

 This can be a convenient tool for debugging deadlocks.

 The function accepts any arguments so that it can easily be used as e.g. a
 signal handler, but it does not use the arguments for anything.

 To use this function as a signal handler, setup logging with a
 :attr:`logging.CRITICAL` threshold or lower and make your main thread
 register this with the :mod:`signal` module::

 import logging
 import signal

 import pykka.debug

 logging.basicConfig(level=logging.DEBUG)
 signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

 If your application deadlocks, send the `SIGUSR1` signal to the process::

 kill -SIGUSR1 <pid of your process>

 Signal handler caveats:

 - The function *must* be registered as a signal handler by your main
 thread. If not, :func:`signal.signal` will raise a :exc:`ValueError`.

 - All signals in Python are handled by the main thread. Thus, the signal
 will only be handled, and the tracebacks logged, if your main thread is
 available to do some work. Making your main thread idle using
 :func:`time.sleep` is OK. The signal will awaken your main thread.
 Blocking your main thread on e.g. :func:`Queue.Queue.get` or
 :meth:`pykka.Future.get` will break signal handling, and thus you won't
 be able to signal your process to print the thread tracebacks.

 The morale is: setup signals using your main thread, start your actors,
 then let your main thread relax for the rest of your application's life
 cycle.

 For a complete example of how to use this, see
 ``examples/deadlock_debugging.py`` in Pykka's source code.

 .. versionadded:: 1.1
 """

 thread_names = dict((t.ident, t.name) for t in threading.enumerate())

 for ident, frame in sys._current_frames().items():
 name = thread_names.get(ident, '?')
 stack = ''.join(traceback.format_stack(frame))
 logger.critical(
 'Current state of %s (ident: %s):\n%s', name, ident, stack)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

_modules/pykka/registry.html

 Navigation

 		
 index

 		
 modules |

 		Pykka 1.2.1 documentation »

 		Module code »

 Source code for pykka.registry

from __future__ import absolute_import

import logging
import threading

from pykka import compat

logger = logging.getLogger('pykka')

__all__ = [
 'ActorRegistry',
]

[docs]class ActorRegistry(object):

 """
 Registry which provides easy access to all running actors.

 Contains global state, but should be thread-safe.
 """

 _actor_refs = []
 _actor_refs_lock = threading.RLock()

 @classmethod
[docs] def broadcast(cls, message, target_class=None):
 """
 Broadcast ``message`` to all actors of the specified ``target_class``.

 If no ``target_class`` is specified, the message is broadcasted to all
 actors.

 :param message: the message to send
 :type message: picklable dict

 :param target_class: optional actor class to broadcast the message to
 :type target_class: class or class name
 """
 if isinstance(target_class, compat.string_types):
 targets = cls.get_by_class_name(target_class)
 elif target_class is not None:
 targets = cls.get_by_class(target_class)
 else:
 targets = cls.get_all()
 for ref in targets:
 ref.tell(message)

 @classmethod
[docs] def get_all(cls):
 """
 Get :class:`ActorRef <pykka.ActorRef>` for all running actors.

 :returns: list of :class:`pykka.ActorRef`
 """
 with cls._actor_refs_lock:
 return cls._actor_refs[:]

 @classmethod
[docs] def get_by_class(cls, actor_class):
 """
 Get :class:`ActorRef` for all running actors of the given class, or of
 any subclass of the given class.

 :param actor_class: actor class, or any superclass of the actor
 :type actor_class: class

 :returns: list of :class:`pykka.ActorRef`
 """
 with cls._actor_refs_lock:
 return [
 ref for ref in cls._actor_refs
 if issubclass(ref.actor_class, actor_class)]

 @classmethod
[docs] def get_by_class_name(cls, actor_class_name):
 """
 Get :class:`ActorRef` for all running actors of the given class
 name.

 :param actor_class_name: actor class name
 :type actor_class_name: string

 :returns: list of :class:`pykka.ActorRef`
 """
 with cls._actor_refs_lock:
 return [
 ref for ref in cls._actor_refs
 if ref.actor_class.__name__ == actor_class_name]

 @classmethod
[docs] def get_by_urn(cls, actor_urn):
 """
 Get an actor by its universally unique URN.

 :param actor_urn: actor URN
 :type actor_urn: string

 :returns: :class:`pykka.ActorRef` or :class:`None` if not found
 """
 with cls._actor_refs_lock:
 refs = [
 ref for ref in cls._actor_refs
 if ref.actor_urn == actor_urn]
 if refs:
 return refs[0]

 @classmethod
[docs] def register(cls, actor_ref):
 """
 Register an :class:`ActorRef` in the registry.

 This is done automatically when an actor is started, e.g. by calling
 :meth:`Actor.start() <pykka.Actor.start>`.

 :param actor_ref: reference to the actor to register
 :type actor_ref: :class:`pykka.ActorRef`
 """
 with cls._actor_refs_lock:
 cls._actor_refs.append(actor_ref)
 logger.debug('Registered %s', actor_ref)

 @classmethod
[docs] def stop_all(cls, block=True, timeout=None):
 """
 Stop all running actors.

 ``block`` and ``timeout`` works as for
 :meth:`ActorRef.stop() <pykka.ActorRef.stop>`.

 If ``block`` is :class:`True`, the actors are guaranteed to be stopped
 in the reverse of the order they were started in. This is helpful if
 you have simple dependencies in between your actors, where it is
 sufficient to shut down actors in a LIFO manner: last started, first
 stopped.

 If you have more complex dependencies in between your actors, you
 should take care to shut them down in the required order yourself, e.g.
 by stopping dependees from a dependency's
 :meth:`on_stop() <pykka.Actor.on_stop>` method.

 :returns: If not blocking, a list with a future for each stop action.
 If blocking, a list of return values from
 :meth:`pykka.ActorRef.stop`.
 """
 return [ref.stop(block, timeout) for ref in reversed(cls.get_all())]

 @classmethod
[docs] def unregister(cls, actor_ref):
 """
 Remove an :class:`ActorRef <pykka.ActorRef>` from the registry.

 This is done automatically when an actor is stopped, e.g. by calling
 :meth:`Actor.stop() <pykka.Actor.stop>`.

 :param actor_ref: reference to the actor to unregister
 :type actor_ref: :class:`pykka.ActorRef`
 """
 removed = False
 with cls._actor_refs_lock:
 if actor_ref in cls._actor_refs:
 cls._actor_refs.remove(actor_ref)
 removed = True
 if removed:
 logger.debug('Unregistered %s', actor_ref)
 else:
 logger.debug(
 'Unregistered %s (not found in registry)', actor_ref)

 © Copyright 2010-2015, Stein Magnus Jodal.
 Created using Sphinx 1.3.5.

